Kent Weigel Never Stop Learning
Math

A Little Bit of Diff Eq


The problem

$$\require{cancel}$$
$$y^\prime = 3x^2(y^2 + 1)$$ $$y(x) = tan(x^3 + C)$$ $$y(0) = 1$$

Find derivative

$$y^\prime(x) = {1 \over cos^2(x^3 + C)} \times 3x^2$$

Prove solution

$${1 \over cos^2(x^3 + C)} \times \cancel{3x^2} = \cancel{3x^2} \left[tan^2(x^3 + C) + 1 \right]$$ $${1 \over cos^2(x^3 + C)} = tan^2(x^3 + C) + 1$$ $${1 \over cos^2(x^3 + C)} - 1 = tan^2(x^3 + C)$$

Since:

$${1 \over cos^2(f(x))} - 1 = tan^2(f(x))$$
$$\cancel{tan^2(x^3 + C)} = \cancel{tan^2(x^3 + C)}$$

Find C

$$1 = tan(0 + C)$$ $$atan(1) = C$$ $$C = \pi / 4$$

Unique solution

$$y(x) = tan(x^3 + \pi / 4)$$